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ABSTRACT

Data augmentation has become a staple component of ma-
chine learning to drive faster generalization in model train-
ing. As architectures continue to diversify and scale, opti-
mizing their training becomes increasingly important. In this
work, we conduct an empirical analysis on combinations of
data augmentation strategies and intensities across a range of
model sizes and types to identify the highest performing aug-
mentations strategies. While we find that convolutional neu-
ral networks (CNNSs) far exceed vision transformers (ViTs),
multilayer perceptrons (MLPs), and variational autoencoders
(VAES5) in training and validation metrics (numbers) on im-
age data, empirical analysis demonstrates geometric augmen-
tations have the strongest generalization improvements. Ge-
ometric augmentation strategies consisting of translation, ro-
tation, and scale significantly outperform other augmentation
types like pixel-values and frequency domain regardless of
model type or size. These findings hold for both the single and
multi-augmentation case, illustrating that augmentation tech-
niques which target orthogonal invariance have compounding
effects towards improving model generalization. These find-
ings help enable researchers to make more informed decisions
to improve model generalization.

Index Terms— Generalization, Transformer, Data Aug-
mentation, Robustness

1. INTRODUCTION

Data augmentation has become a fundamental part of ma-
chine learning for its generalization properties. These meth-
ods have been shown to improve model understanding through
varying the quality and quantity of information that can be
extracted from a sample. These drive neural networks to learn
properties of data invariance and probabilistic extrapolation
thereby reducing overfitting [1]. This has be shown to be
effective across a range of learning domains including nat-
ural language processing, computer vision, and time series
forecasting [2].

Generalization is defined by a model’s capability to work
effectively on unseen data. The generalization of models de-
pends on many variables including model architecture, hyper-
parameter selection, and diversity of training data. Recently,

studies have shown that neural networks, regardless of their
designed complexity, can achieve significantly better general-
ization through the use of data augmentation [3].

Despite the pervasiveness and importance of data aug-
mentation strategies, little work has explored the hyperparam-
eter space of data augmentation techniques. Previous works,
such as AutoAugment [4], searches for improved data aug-
mentation policies through sub-process search space. Follow
up works like RandAugment [5], reduce the necessary search
space and incorporate the target objective as part of its own
search goal. Furthermore, existing studies have focused their
efforts of reducing the search space for applications of data
augmentations, but little work has examined the effects of
different augmentation strategies and their interactions with
various neural network types across scales.

In this work, we experiment with numerous data aug-
mentation techniques to identify the most effective strategies
across a range of configurations. We systematically evaluate
the performance of CNNs, MLPs, VAEs, and VITs across
three model sizes and apply combinations of augmentations
and intensities to each model. Empirical analysis reveals an
interesting relationship between geometeric augmentations
and model architectures. Through this work, we provide a
foundational system and practical augmentation recommen-
dations for future model experiments.

2. RELATED WORK

For many years, data augmentation has been acknowledged
as a straightforward yet effective method for enhancing gen-
eralization in machine learning models. Most work has con-
solidated around the generation of augmentation strategies.
In order to expose models to a variety of inputs without the
need for fresh labeled data, early work concentrated on sim-
plistic geometric changes like flipping, cropping, and rotat-
ing. By making models more resilient to semantic variations,
these augmentations created diverse feature representations
that more invariant and thus more robust. More sophisticated
augmentation methods, such as blurring, have been put forth
to replicate more difficult or realistic input distributions as
datasets have continued to expand. Although simple, these
techniques have shown remarkable efficacy, especially when
combined with convolutional architectures and their inductive



biases.

Most recent efforts have been on employing search-based
methods to automatically find the best augmentation policies.
A reinforcement learning-based method called AutoAugment
[4] looks at augmentation policies to find those that optimize
validation performance. RandAugment [5], which stream-
lines the search process by narrowing the policy space to
randomly selected operations with defined magnitude and
count parameters, followed this. These methods showed that
well-thought-out augmentation pipelines may compete with
or even outperform architectural enhancements. However,
they are less interpretable or accessible for widespread use
across architectures and model sizes because of their high
computational cost and model-specific customization.

‘We position this work perpendicular to these prior works
by exploring the effectiveness of augmentation strategies
across a range of models. Rather than focus on the generation
of strategies to improve generalization on a per model basis,
this work focuses on the empirical analysis to garner new
insights into the most effective strategies to utilize. We offer
this work as a compliment to works like RandAugment and
AutoAugment to help shape insights into effective strategies.

3. METHODOLOGY

3.1. Dataset

We select the CIFARI0 dataset, a popular machine learn-
ing benchmark with 60,000 colored images divided into 10
classes of 6,000 images with the dimensions 32x32 [6]. We
elected to use CIFAR10 due to its RGB channels which help
improve the sample complexity and increase the difficulty of
model generalization. Other datasets, like MNIST [7], were
proposed for this work, but initial results demonstrated the
sample complexity was too low.

3.2. Model Architecture

We evaluate four common but distinct model architectures.
These models were selected to reduce the search space while
providing an broad experimental range of architectures and
biases.

e Multilayer Perceptron: A simple feed-forward neural
network with fully connected layers.

¢ Convolutional Neural Network: A convolutional ar-
chitecture designed specifically for spatial data, like im-
ages.

¢ Vision Transformer: A variant of the Transformer
model tailored for image data, using a patch-based
system approach.

¢ Variational Autoencoder: A generative encoder and
decoder architecture tuned specifically for prediction
through the utilization of class tokens.

We design three model sizes to compare augmentations
strategies as models scale. We handcraft and validate model
parameter counts to remain within 5% of their expected pa-
rameters namely: small, medium, and large at 1, 3, and 9
million parameters respectively. This model scale provides
insights across architecture sizes to address the growing con-
cern of handling datasets at scale through comparisons of gen-
eralization efficiency induced by parameter counts.

3.3. Augmentation Strategies

We explore the affects of different image augmentation strate-
gies including type, intensity, and combination during model
training. The following augmentations are considered in this
work:

3.4. Spatial Domain Transformations
3.4.1. Geometric Transformations

* Rotation: Rotates the image by a random angle.
I'(x,y) = I(xcos® — ysinb, xsin  + y cos §) where
0 ~ U(—a, o) and o = intensity - 90°.

* Translation: Shifts the image in random directions ac-
cording to a scalar value. I'(x,y) = I(z— Az, y—Ay)
where Az, Ay ~ U(—intensity, intensity).

* Scaling: Resizes the image by a random factor. I'(z, y)
I(sz, sy) where s ~ U(1 — intensity, 1 + intensity).

3.4.2. Pixel-Value Transformations

* Gaussian Noise: Adds random noise to pixel val-
ues. I'(z,y) = clamp(I(z,y) + €,0,1) where ¢ ~
N (O,intensity2). Here, clamping keeps perturbations
within the image manifold domain.

* Salt-and-Pepper Noise: Gaussian noise with perturba-
tions set to extreme values, 1 or 0.

* Gaussian Blur: Smooths the image via convolution (¥)
with a Gaussian kernel. I’ = G, * I where G, is a
2D Gaussian function with standard deviation o = 2 -
intensity.

* Random Erasing: Masks random regions of the im-
age.
0, if (x,y) € R
I'(z,y) = { i (,9)
otherwise

1
I(x,y), M

where R is a randomly positioned rectangular region.
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Fig. 1. Visual comparison of data augmentation techniques applied to a CIFAR10 image. Here we see the effects of applying
various augmentation strategies. We set augmentation intensities to 0.5 to be visibly apparent.

3.5. Frequency Domain Transformations

* Frequency Perturbations: Modifies image in the fre-
quency domain. I’ = F~Y(F(I) - (1 + €)) where F is
the Fourier transform and € ~ A/ (0, intensity?).

We train models by applying all possible combinations of
augmentation within a selected bounding variable.

3.6. Experimental Setup

To ensure a controlled, yet flexible evaluation environment,
all experiments were performed using a centralized configu-
ration management system, which allowed precise tuning of
hyperparameters, augmentation policies, and model variants.
This allowed for a consistent application of experimental set-
tings across architectures and augmentation pipelines.

We conducted a systematic evaluation of model perfor-
mance under various noise-based perturbations utilizing a di-
verse set of model and augmentation strategies. All experi-
ments were performed on the CIFAR10 dataset, with a batch
size of 512 over 25 epochs. The learning rate (0.001) and
weight decay (0.0) were selected to avoid regularization arti-
facts, ensuring that generalization effects came from the aug-
mentation rather than optimizer-induced smoothing. All mod-
els were trained using the AdamW optimizer without learning
rate schedules to isolate the impact of augmentation from rate
decay.

Augmentations were divided into standard and advanced
categories using dynamic selectors, and applied at varying in-
tensities (0.1, 0.3, 0.5). We restricted the maximum number
of combinations of augmentation to a bounding variable of 2
to avoid excessive computational costs and prevent degrada-
tion of the input data beyond recognition.

4. RESULTS

We identified interesting information relating the success of
models to semantic preservation while also finding the bound-
ing limitations of this work. The main limitation is a lack of
variability in dataset size, which we believe would provide a
more accurate representation of the varying model sizes. By
providing data samples according to model parameter counts,

Table 1. Individual Augmentation Techniques Ranked by
Mean Validation Accuracy
Rank Augmentation Technique = Mean Acc.(%)

1 Control (No Augmentation) 66.27

2 Translation 64.84

3 Rotation 64.80

4 Scale 64.72

5 Gaussian Blur 64.26

6 Frequency Domain 63.05

7 Random Erasing 62.88

8 Gaussian Noise 59.37

9 Salt & Pepper 58.23

Table 2. Top Augmentation Pairs Ranked by Mean Validation

Accuracy
Rank Augmentation Pair Mean Acc.(%)
1 Gaussian Blur + Translation 67.51
2 Scale + Translation 67.41
3 Rotation + Scale 67.25
4 Rotation + Translation 67.13
5 Gaussian Blur + Rotation 66.99
6 Gaussian Blur + Scale 66.81
7 Frequency Domain + Rotation 65.78
8 Frequency Domain + Scale 65.78
9 Frequency Domain + Translation 65.70
10 Random Erasing + Rotation 65.36

we would improve the efficiency of generalization. Tables [1,
2, 3] show the main findings, primarily that the best augmen-
tation strategies almost always include a geometric augmen-
tation.

4.1. Baseline Performance: Control and Individual Aug-
mentations

Table 1 shows the ranking of individual augmentation tech-
niques by mean validation accuracy. Unsurprisingly, some
control models without augmentation achieve higher valida-
tion accuracies than the closest singular augmentation. This
is likely the result choosing minimal training times, resulting



Table 3. Best Performing Configuration by Model Architecture and Size

Model Size Aug. 1 Aug. 2 Int. 1 Int. 2 Val. Acc. (%)

CNN Small Translation None 0.3 - 84.68
Medium Translation Scale 0.1 0.3 84.81

Large Translation Scale 0.3 0.3 83.91

VAE Small Scale None 0.3 - 73.54
Medium Translation Gaussian Blur 0.3 0.1 74.66

Large Rotation Translation 0.1 0.3 75.03

VIT Small Rotation Translation 0.1 0.3 69.91
Medium Rotation Translation 0.1 0.3 67.90

Large Translation Scale 0.1 0.1 67.85

MLP Small Translation Scale 0.1 0.1 55.11
Medium Translation Gaussian Blur 0.1 0.1 55.32

Large Rotation Translation 0.1 0.1 56.18

in unconstrained models performing better in shorter training
windows. Translation (64.84%), rotation (65.80%), and scal-
ing (64.72%) consistently outperform the other perturbations,
indicating that these geometric transformations add signifi-
cant diversity while maintaining the semantic content of the
data. This is especially notable as some augmentation strate-
gies, such as VAEs in table 3, demonstrate an improvement
on baseline generalization metrics. Conversely, the lowest
performing augmentation strategies are obtained with noise-
based perturbations such as Gaussian noise (59.37%) and salt-
and-pepper (58.23%), suggesting that stochastic perturbations
to semantic content inhibit generalization, at least in the early
stages of training. These results suggest that geometric aug-
mentations provide the most reliable generalization benefits
when used in isolation, whereas noise-based methods may re-
quire careful tuning or combinations to be effective.

4.2. Augmentation Pair Performance

In table 2, we present the best augmentation pairs based on
their mean validation accuracy across experiments. The best
combinations across intensities and models always utilized
geometric augmentations strategies. Translation, scale, and
rotation appear to work the best together, supporting the idea
that changes which preserve the information content while
transforming the data help apply variance to the semantic
context thereby increasing robustness and generalization.
This understanding is furthered by the next best augmenta-
tion, Gaussian blur, which helps generalize without changing
the image’s semantic structure similar to the geometric trans-
formations.

Interestingly, the application of perturbations in Gaussian
blur constrains the way noise is added such that all noise re-
mains on the data manifold. In theory, the geometric transfor-
mations introduce the same types of perturbations. The prime
difference within the geometric augmentations become how
each transforms the data manifold, resulting in better stochas-
ticity and better generalization. However, combining data

augmentation techniques performs better than their isolated
counterparts, showcasing the benefits of multi-augmentation
techniques and how complimentary transformations can eas-
ily expand the data manifold beyond the training data.

4.3. Model Performance by Augmentation

We reveal that geometric transformations perform better than
their pixel-value counterparts across all neural network archi-
tectures. This pattern illustrates the spatial transformation in-
variance represents that preserves semantic context provides
strong generalization regardless of the model architectures
structural biases. As Table 3 shows, despite the variation in
validation accuracy between model types, the top performing
augmentation strategies remain geometric, illustrating stabil-
ity between configurations. There is however, less variation
in the intensity values likely caused by shorter training times.
Notably, the variance in validation accuracy maintains a con-
sistent relationship with the mean performance across model
architectures.

5. FUTURE WORK

The main results of this work falls short of giving a com-
prehensive understanding on the role of data augmentations.
Firstly, while we provide an account across model and aug-
mentation configurations, we did not experiment on diverse
datasets. This lack of diversity was clearly expressed in the
data with CNNs having the overwhelming best performance.
However, the lack of diversity was the result of insufficient
hardware and temporal resources. This constrained search
space significantly reduced the quantity of models, augmen-
tations, and combinations we experimented on. Here, future
work may seek to incorporate datasets of varying sizes, di-
mensions, and modalities. Future work may also seek to alter
the task objectives or significantly increase training lengths to
capture a comprehensive picture of the augmentation strategy
space.



Despite this, we provide novel insights into the value
of previously overlooked methods due to their simplicity.
We find methods like translation, scale, and rotation con-
sistently outperform other methods across sizes and model
type. These methods share augmentation strategies which
preserve semantic information and inject noise orthogonal to
the data manifold, resulting in improved generalization capa-
bilities, regardless of perturbation strength. Therefore, future
work may explore distilling the core of these augmentation
strategies down to its essence.

6. CONCLUSION

Analysis demonstrates that combinations of augmentation
techniques consistently outperform individual methods across
all model architectures on generalization. We show that the
best data augmentation techniques overwhelmingly consist of
translation, rotation, scale, and Gaussian blur. These strate-
gies preserve the information content of the image through
geometric transformation illuminating a fundamental connec-
tion between data variance and model generalization. These
findings lead us to conclude that occlusion based methods,
while common, are not as effective in training the model to
generalize beyond the training data.

Notably, CNNs were by far the best performing model
across all metrics, likely due to their translation equivariance
and the selected dataset. While CNNs outperformed all other
models, we find that other architectures also show significant
improvements when utilizing the same group of augmenta-
tions, namely translation, rotation, and scale. This universal
improvement, regardless of model size or type, illustrates that
transformations which preserve semantic information while
injecting perturbations orthogonal to the data manifold con-
sistently enhance generalization. These findings suggest a
strategic application of simple geometric transformations can
significantly improve model performance.
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